
Abstract

Let $\left(c_{i}\right)$ be a given sequence of numbers. We define the linear functional c on the vector space of polynomials by $$
c\left(x^{i}\right)=c_{i}, \quad i=0,1, \ldots, \quad \text { and } \quad c\left(x^{i}\right)=0, \quad i<0 .
$$

The family of polynomials $\left\{P_{k}\right\}$ is called the family of formal orthogonal polynomials with respect to c if, for all k, P_{k} has the exact degree k and $$
c\left(x^{i} P_{k}(x)\right)=0, \quad i=0, \ldots, k-1 .
$$

When $c_{i}=\int_{a}^{b} x^{i} w(x) d x$, where w is a weight function, the usual orthogonal polynomials are recovered.

Formal orthogonal polynomials satisfy many of the algebraic properties of the usual ones: a three-term recurrence relation, the Shohat-Favard theorem, the Christoffel-Darboux identity and its consequences, etc.

Formal orthogonal polynomials play a fundamental role, for example, in the construction of Padé approximants, and in the algorithms for implementing Lanczos method for solving systems of linear equations.

