Abstract

Let (c_i) be a given sequence of numbers. We define the linear functional c on the vector space of polynomials by

$$c(x^{i}) = c_{i}, \quad i = 0, 1, \dots, \text{ and } c(x^{i}) = 0, \quad i < 0.$$

The family of polynomials $\{P_k\}$ is called the family of *formal orthogonal polynomials* with respect to c if, for all k, P_k has the exact degree k and

$$c(x^i P_k(x)) = 0, \quad i = 0, \dots, k-1.$$

When $c_i = \int_a^b x^i w(x) dx$, where w is a weight function, the usual orthogonal polynomials are recovered.

Formal orthogonal polynomials satisfy many of the algebraic properties of the usual ones: a three-term recurrence relation, the Shohat-Favard theorem, the Christoffel-Darboux identity and its consequences, etc.

Formal orthogonal polynomials play a fundamental role, for example, in the construction of Padé approximants, and in the algorithms for implementing Lanczos method for solving systems of linear equations.