数学与系统科学研究院计算数学所学术报告

报告人：凌青 教授 （中山大学）

报告题目：

Variance－Reduced
Stochastic
Quasi－Newton Methods for
Decentralized Learning
邀请人：刘歆 研究员
报告时间：2021年10月25日（周一）
上午 9:30-10:30

报告地点：科技综合楼 311 教室

Abstract：

In this work，we investigate stochastic quasi－Newton methods for minimizing a finite sum of cost functions over a decentralized network．We develop a general algorithmic framework that incorporates stochastic quasi－Newton approximation with variance reduction so as to achieve fast convergence．At each time each node constructs a local，inexact quasi－Newton direction that asymptotically approaches the global，exact one．To be specific，（i）A local gradient approximation is constructed by using dynamic average consensus to track the average of variance－reduced local stochastic gradients over the entire network；（ii）A local Hessian inverse approximation is assumed to be positive definite with bounded eigenvalues，and we specify two fully decentralized stochastic quasi－Newton methods， damped regularized limited－memory DFP（Davidon－Fletcher－Powell） and damped limited－memory BFGS （Broyden－Fletcher－Goldfarb－Shanno），to locally construct such a Hessian inverse approximation without extra sampling or communication．Compared to the existing decentralized stochastic first－order methods，the proposed general framework introduces the second－order curvature information without incurring extra sampling or communication．With a fixed step size，we establish the conditions under which the proposed general framework linearly converges to an exact optimal solution．
欢迎大家参加!

