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The striking simplicity of averaging techniques and their amazing accuracy in too many
numerical examples made them an extremly popular tool in scientific computing whenever
finite elements might be useful. Given a dicrete flux py and an easily post-processed approx-
imation Apy, to compute the error estimator 14 := ||pr — App||- One does not even need an
equation to emply that technique occasionally named after Zienkiewicz & Zhu.

The beginning of a mathematical justification of the error estimator 14 as a computable
approximation of the (unknown) error ||p — py|| involved the concept of super-convergence
points. For highly structured meshes and a very smooth exact solution p, the error ||[p— Apy||
of the post-processed approximation Apy, may be (much) smaller than ||p — py|| of the given
pr. Under the assumption that ||[p—App|| = h.o.t. is relatively sufficiently small, the triangle
inequality immediately verifies reliability, i.e.,

”p —Ph” < Crel na+ h.O.t.,

and efficiency, i.e.,
na < Cess|lp— prl| + h.ot.,

of the averaging error estimator 74. However, the underlying assumptions essentially con-
tradict the notion of adaptive grid refining for optimal experimental convergence rates when
p is singular. Moreover, the proper treatment of boundary conditions lacks a serious inside.
The presentation reports on old and new arguments for reliability and efficiency in the
above sense with multiplicative constants Cy.; and C.¢y and higher order terms h.o.t. Hi-
lighted are the general class of meshes, averaging techniques, or finite element methods
(conforming, nonconforming, and mixed elements) for elliptic PDEs. Numerical examples
illustrate the amazing accuracy of 4. The presentation closes with a discussion on current
developments and the limitations as well as the perspectives of averaging techniques.



