数学与系统科学研究院 计算数学所学术报告

报告人: 陈小君教授

(香港理工大学应用数学系主任、讲座教授)

报告题目:

Feasible Smoothing Quadratic Regularization Method for Box Constrained Non-Lipschitz Optimization

邀请人: 刘歆 博士

报告时间: 2014年5月31日(周六) 上午10:00-11:00

报告地点: 科技综合楼三层 311 计算数学所报告厅

Abstract:

We propose a smoothing quadratic regularization (SQR) method for solving box constrained optimization problems with a non-Lipschitz regularization term that includes the \$1_p\$ norm (\$0<p<1\$) of the gradient of the underlying image in the \$1 2\$-\$1 p\$ problem as a special case. At each iteration of the SQR algorithm, a new iterate is generated by solving a strongly convex quadratic problem with box constraints and the smoothing parameter is updated by a simple criterion. We define an \$\epsilon\$ (\$\epsilon \ge 0\$) scaled first order stationary point of the box constrained non-Lipschitz optimization problem. We prove that any cluster point of \$\epsilon\$ scaled first order stationary points with \$\epsilon>0\$ satisfies a first order necessary condition for a local minimizer as \$\epsilon \$ goes to \$0\$, and the worst-case iteration complexity of the SQR algorithm for finding an \$\epsilon\$ scaled first order stationary point is \$O(\epsilon^{-2})\$. Numerical examples are given to validate the worst-case complexity result and show good performance of the SQR algorithm for image restoration.

欢迎大家参加!