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Abstract： 

We show that for a parabolic problem with maximal 

$L^p$-regularity, the time discretization with a linear multistep 

method or Runge--Kutta method also has maximal 

$\ell^p$-regularity uniformly in the stepsize if the method is A-stable. 

In particular, the implicit Euler method, the Crank--Nicolson 

method, the second-order backward difference formula (BDF), and 

the Radau IIA and Gauss Runge--Kutta methods of all orders 

preserve maximal regularity.  

The proof uses Weis' characterization of maximal $L^p$-regularity 

in terms of the $R$-boundedness of the resolvent operator, a discrete 

operator-valued Fourier multiplier theorem by Blunck, and 

generating function techniques that have been familiar in the 

stability analysis of time discretization methods since the work of 

Dahlquist.  

The $A(\alpha)$-stable higher-order BDF methods have maximal 

$\ell^p$-regularity under an $R$-boundedness condition in a larger 

sector.  

Extension to fully discrete finite element methods is also given.  

As an illustration of the use of maximal regularity in the error 

analysis of discretized nonlinear parabolic equations, it is shown how 

error bounds are obtained without using any growth condition on the 

nonlinearity. 
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