2025年12月07日 星期日 登录 EN

学术活动
Unconditionally energy-stable, and fully discrete finite element schemes for the Rosensweig model
首页 - 学术活动
报告人:
董晓靖 教授(湘潭大学数学与计算科学学院)
邀请人:
龚伟 研究员
题目:
Unconditionally energy-stable, and fully discrete finite element schemes for the Rosensweig model
时间地点:
12月8日(周一)10:30-11:30,思源楼713
摘要:

Rosensweig’s modeling considers fluid dynamics, spins of ferromagnetic particles, magnetic polarization, and a magnetic induction field. The corresponding model incorporates the Navier-Stokes equations, the angular momentum equation, the magnetization equation, and the magnetostatic equation. In this talk, we propose linear, unconditionally energy-stable, and fully discrete finite element schemes for the model. We obtain the existence and uniqueness of the numerical solutions by the Leray-Schauder fixed point theorem, and prove the unconditional convergence through the Aubin-Lions-Simon lemma. Numerical experiments verify the effectiveness and accuracy of the schemes, and simulate the controllability of the magnetic fluid driven by an applied magnetic field.